465 research outputs found

    Analysis of fusion-fission dynamics by pre-scission neutron emission in 58^{58}Ni+208^{208}Pb

    Full text link
    We analyzed the experimental data of the pre-scission neutron multiplicity in connection with fission fragments in the reaction 58^{58}Ni+208^{208}Pb at the incident energy corresponding to the excitation energy of compound nucleus EE^{*}=185.9 MeV, which was performed by D\'{e}MoN group. The relation between the pre-scission neutron multiplicity and each reaction process having different reaction time is investigated. In order to study the fusion-fission process accompanied by neutron emission, the fluctuation-dissipation model combined with a statistical model is employed. It is found that the fusion-fission process and the quasi-fission process are clearly distinguished in correlation with the pre-scission neutron multiplicity.Comment: 11 figure

    Quantification of spin alignment in fission by simultaneous treatment of gamma and conversion electron angular distributions

    Full text link
    The study of the angular momentum properties of fission fragments can shed light about the complex mechanisms that characterize the fission process. One quantity that is of significant interest, and has not yet been studied adequately, is the alignment of the fragments, which is the cause of anisotropy of the {\gamma} rays along the fission axis and has been observed in various past and recent experiments. In this work, we have performed calculations using the FIFRELIN code, in an attempt to quantify the alignment of the nuclear spins after neutron-emission. Under the statistical tensor formalism of angular distributions, the conversion-electron and the {\gamma}-ray angular distributions can be treated simultaneously in an event-by-event calculation. This enables a first prediction of the conversion-electron angular distribution with respect to the fission axis. An average value for the alignment of fission fragments is deduced for 252Cf, with the use of recent experimental data. The method used for the present work can serve as a starting point for future theoretical and experimental studies in terms of {\gamma} and conversion-electron spectroscopy in view of studying the spin alignment of individual fission fragments, which could further improve our understanding on the process of fission

    Isocaling and the Symmetry Energy in the Multifragmentation Regime of Heavy Ion Collisions

    Get PDF
    The ratio of the symmetry energy coefficient to temperature, asym/Ta_sym/T, in Fermi energy heavy ion collisions, has been experimentally extracted as a function of the fragment atomic number using isoscaling parameters and the variance of the isotope distributions. The extracted values have been compared to the results of calculations made with an Antisymmetrized Molecular Dynamics (AMD) model employing a statistical decay code to account for deexcitation of excited primary fragments. The experimental values are in good agreement with the values calculated but are significantly different from those characterizing the yields of the primary AMD fragments.Comment: 12 pages, 6 figure

    The Quantum Nature of a Nuclear Phase Transition

    Get PDF
    In their ground states, atomic nuclei are quantum Fermi liquids. At finite temperatures and low densities, these nuclei may undergo a phase change similar to, but substantially different from, a classical liquid gas phase transition. As in the classical case, temperature is the control parameter while density and pressure are the conjugate variables. At variance with the classical case, in the nucleus the difference between the proton and neutron concentrations acts as an additional order parameter, for which the symmetry potential is the conjugate variable. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in 4^{4}He-3^{3}He liquid mixtures. We present experimental results which reveal the N/Z dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.Comment: 5 pages, 4 figure

    Isobaric Yield Ratios and The Symmetry Energy In Fermi Energy Heavy Ion Reactions

    Full text link
    The relative isobaric yields of fragments produced in a series of heavy ion induced multifragmentation reactions have been analyzed in the framework of a Modified Fisher Model, primarily to determine the ratio of the symmetry energy coefficient to the temperature, aa/Ta_a/T, as a function of fragment mass A. The extracted values increase from 5 to ~16 as A increases from 9 to 37. These values have been compared to the results of calculations using the Antisymmetrized Molecular Dynamics (AMD) model together with the statistical decay code Gemini. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the ratios determined from fitting the primary fragment distributions from the AMD model calculation are ~ 4 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.Comment: 10 pages, 12 figure

    Critical behavior of the isotope yield distributions in the Multifragmentation Regime of Heavy Ion Reactions

    Full text link
    Isotope yields have been analyzed within the framework of a Modified Fisher Model to study the power law yield distribution of isotopes in the multifragmentation regime. Using the ratio of the mass dependent symmetry energy coefficient relative to the temperature, asym/Ta_{sym}/T, extracted in previous work and that of the pairing term, ap/Ta_{p}/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields have been corrected for these effects. For a given I = N - Z value, the corrected yields of isotopes relative to the yield of 12C^{12}C show a power law distribution, Y(N,Z)/Y(12C)AτY(N,Z)/Y(^{12}C) \sim A^{-\tau}, in the mass range of 1A301 \le A \le 30 and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted τ\tau value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple de-excitation model, which the power law distribution of the primary isotopes is determined to τprim=2.4±0.2\tau^{prim} = 2.4 \pm 0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at or very near the critical point.Comment: 5 pages, 5 figure

    The Isospin Dependence Of The Nuclear Equation Of State Near The Critical Point

    Get PDF
    We discuss experimental evidence for a nuclear phase transition driven by the different concentration of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in 4He-3He liquid mixtures. We present experimental results which reveal the N/A (or Z/A) dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.Comment: 14 pages, 18 figure

    A novel approach to Isoscaling: the role of the order parameter m = (N-Z)/A

    Full text link
    Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m^6) theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the 'external (conjugate) field' H. The external field is just given by the difference in chemical potentials of the neutrons and protons of the two sources. To distinguish from previously employed isoscaling relationships, this approach is dubbed: m - scaling. We discuss the relationship between this framework and the standard isoscaling formalism and point out some substantial differences in interpretation of experimental results which might result. These should be investigated further both theoretically and experimentally.Comment: 14 pages, 5 figure

    Experimental reconstruction of primary hot isotopes and characteristic properties of the fragmenting source in the heavy ion reactions near the Fermi energy

    Get PDF
    The characteristic properties of the hot nuclear matter existing at the time of fragment formation in the multifragmentation events produced in the reaction 64^{64}Zn + 112^{112}Sn at 40 MeV/nucleon are studied. A kinematical focusing method is employed to determine the multiplicities of evaporated light particles, associated with isotopically identified detected fragments. From these data the primary isotopic yield distributions are reconstructed using a Monte Carlo method. The reconstructed yield distributions are in good agreement with the primary isotope distributions obtained from AMD transport model simulations. Utilizing the reconstructed yields, power distribution, Landau free energy, characteristic properties of the emitting source are examined. The primary mass distributions exhibit a power law distribution with the critical exponent, A2.3A^{-2.3}, for A15A \geq 15 isotopes, but significantly deviates from that for the lighter isotopes. Landau free energy plots show no strong signature of the first order phase transition. Based on the Modified Fisher Model, the ratios of the Coulomb and symmetry energy coefficients relative to the temperature, ac/Ta_{c}/T and asym/Ta_{sym}/T, are extracted as a function of A. The extracted asym/Ta_{sym}/T values are compared with results of the AMD simulations using Gogny interactions with different density dependencies of the symmetry energy term. The calculated asym/Ta_{sym}/T values show a close relation to the symmetry energy at the density at the time of the fragment formation. From this relation the density of the fragmenting source is determined to be ρ/ρ0=(0.63±0.03)\rho /\rho_{0} = (0.63 \pm 0.03 ). Using this density, the symmetry energy coefficient and the temperature of fragmenting source are determined in a self-consistent manner as asym=(24.7±3.4)MeVa_{sym} = (24.7 \pm 3.4) MeV and T=(4.9±0.2)T=(4.9 \pm 0.2) MeV
    corecore